Gauge Invariance and Weyl-Polymer Quantization by Franco Strocchi

Page Updated:
Book Views: 23

Author
Franco Strocchi
Publisher
Springer
Date of release
Pages
97
ISBN
9783319176949
Binding
Paperback
Illustrations
Format
PDF, EPUB, MOBI, TXT, DOC
Rating
4
43

Advertising

Get eBOOK
Gauge Invariance and Weyl-Polymer Quantization

Find and Download Book

Click one of share button to proceed download:
Choose server for download:
Download
Get It!
File size:4 mb
Estimated time:3 min
If not downloading or you getting an error:
  • Try another server.
  • Try to reload page — press F5 on keyboard.
  • Clear browser cache.
  • Clear browser cookies.
  • Try other browser.
  • If you still getting an error — please contact us and we will fix this error ASAP.
Sorry for inconvenience!
For authors or copyright holders
Amazon Affiliate

Go to Removal form

Leave a comment

Book review

The book gives an introduction to Weyl non-regular quantization suitable for the description of physically interesting quantum systems, where the traditional Dirac-Heisenberg quantization is not applicable. The latter implicitly assumes that the canonical variables describe observables, entailing necessarily the regularity of their exponentials (Weyl operators). However, in physically interesting cases -- typically in the presence of a gauge symmetry -- non-observable canonical variables are introduced for the description of the states, namely of the relevant representations of the observable algebra.

In general, a gauge invariant ground state defines a non-regular representation of the gauge dependent Weyl operators, providing a mathematically consistent treatment of familiar quantum systems -- such as the electron in a periodic potential (Bloch electron), the Quantum Hall electron, or the quantum particle on a circle -- where the gauge transformations are, respectively, the lattice translations, the magnetic translations and the rotations of 2π.

Relevant examples are also provided by quantum gauge field theory models, in particular by the temporal gauge of Quantum Electrodynamics, avoiding the conflict between the Gauss law constraint and the Dirac-Heisenberg canonical quantization. The same applies to Quantum Chromodynamics, where the non-regular quantization of the temporal gauge provides a simple solution of the U(1) problem and a simple link between the vacuum structure and the topology of the gauge group.

Last but not least, Weyl non-regular quantization is briefly discussed from the perspective of the so-called polymer representations proposed for Loop Quantum Gravity in connection with diffeomorphism invariant vacuum states.


Readers reviews